- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Olbertz, A., Stachely, D., Svoboday, I. & Fuessy, H. (1997). Z. Kristallogr. 212, 135.
- Ropp, R. C., Aia, M. A., Hoffman, C. W. W., Veleker, T. J. & Mooney, R. W. (1959). Anal. Chem. pp. 1163–1166.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Université de Göttingen, Allemagne.

Acta Cryst. (1999). C55, 1398-1399

# Sodium zinc hydroxide selenite, NaZn<sub>2</sub>(OH)(SeO<sub>3</sub>)<sub>2</sub>

WILLIAM T. A. HARRISON<sup>*a*</sup> AND MARK L. F. PHILLIPS<sup>*b*</sup>

<sup>a</sup>Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, and <sup>b</sup>Gemfire Corporation, 2440 Embarcadero Way, Palo Alto, CA 94303, USA. E-mail: w.harrison@abdn.ac.uk

(Received 12 April 1999; accepted 6 May 1999)

## Abstract

The title compound, sodium dizinc hydroxide bis-(selenite), NaZn<sub>2</sub>(OH)(SeO<sub>3</sub>)<sub>2</sub>, contains a dense polyhedral network of octahedral ZnO<sub>6</sub>, pyramidal SeO<sub>3</sub> and tetrahedral NaO<sub>4</sub> units  $[d_{av}(Zn-O) = 2.120(2), d_{av}(Se-O) = 1.700(1)$  and  $d_{av}(Na-O) = 2.316(2)$  Å]. It is isostructural with NaCo<sub>2</sub>(OH)(SeO<sub>3</sub>)<sub>2</sub>.

## Comment

 $NaZn_2(OH)(SeO_3)_2$  (Figs. 1 and 2) is isostructural with  $NaCo_2(OH)(SeO_3)_2$  (Wildner, 1995). It is built up from a three-dimensional network of edge- and vertex-sharing  $ZnO_6$ ,  $SeO_3$  and  $NaO_4$  groups.

The Na1 atom, with site symmetry *m*, is tetrahedrally coordinated by four O-atom near neighbours  $[d_{av}(Na-O) = 2.316 (2) \text{ Å}]$ . Its bond valence sum (Brown, 1996) is 1.00, exactly as expected. The Zn1 (site symmetry  $\overline{I}$ ) and Zn2 (site symmetry *m*) atoms are coordinated octahedrally by O atoms  $[d_{av}(Zn1-O) = 2.102 (2)$  and  $d_{av}(Zn2-O) = 2.138 (2) \text{ Å}]$ . Both Se atoms have site symmetry *m* and display their characteristic pyramidal geometry  $[d_{av}(Se1-O) = 1.699 (1)$  and  $d_{av}(Se2-O) = 1.701 (1) \text{ Å}]$ , with the fourth tetrahedral vertex assumed to be occupied by the Se<sup>IV</sup> lone pair (Engelen *et al.*, 1996).

Of the five O atoms in the structure, O1 is bonded to two Zn and one Na atom, O2 and O4 are bonded to Na, Zn and Se, O3 is bonded to three Zn, and O5 is bonded to two Zn and one Se atom. The H atom is bonded to O3, completing a tetrahedron about the O atom. No

© 1999 International Union of Crystallography Printed in Great Britain – all rights reserved

Fig. 1. Fragment of the NaZn<sub>2</sub>(OH)(SeO<sub>3</sub>)<sub>2</sub> structure (50% displacement ellipsoids) showing the bonding environments of the cations. Symmetry codes are as in Table 2.



Fig. 2. View down [010] of the  $NaZn_2(OH)(ScO_3)_2$  structure, showing the pseudo-channels occupied by  $Na^+$  cations.

hydrogen bond links with  $d(H \cdot \cdot \cdot O) < 2.5$  Å arise from this situation.

The polyhedral connectivity in this phase is the same as that in NaCo<sub>2</sub>(OH)(SeO<sub>3</sub>)<sub>2</sub> (Wildner, 1995), resulting in chains of edge- and corner-sharing ZnO<sub>6</sub> groups propagating along [010] in a manner reminiscent of the  $\alpha$ -Co<sub>2</sub>SiO<sub>4</sub> structure (Morimoto *et al.*, 1974; Wildner, 1995). Se atoms (as selenite groups) crosslink these formal [Co/Zn<sub>2</sub>O<sub>7</sub>H]<sup>9-</sup> chains in the [100] and [001] directions, resulting in small [010] channels occupied by the Na<sup>+</sup> cations.

## Experimental

Single crystals of NaZn<sub>2</sub>(OH)(SeO<sub>3</sub>)<sub>2</sub> were prepared by loading ZnO (0.81 g, 10 mmol), Na<sub>2</sub>SeO<sub>3</sub> (1,73 g, 10 mmol), SeO<sub>2</sub> (1.11 g, 10 mmol) and H<sub>2</sub>O (12 ml) into the teflon cup of a 45 ml capacity hydrothermal bomb. This was sealed and baked for 16 h at 498 K. After cooling and recovery of 2.08 g (98% yield based on Zn) of crystalline product by vacuum filtration, the pH of the mother liquor was 9.

Mo  $K\alpha$  radiation

Cell parameters from 2000

 $0.10\,\times\,0.08\,\times\,0.05$  mm

817 reflections with

 $I > \sigma(I)$ 

 $l = -10 \rightarrow 10$ 

 $R_{\rm int} = 0.04$ 

 $\theta_{\rm max} = 27^{\circ}$  $h = -17 \rightarrow 17$  $k = -7 \rightarrow 7$ 

 $\lambda = 0.71073 \text{ Å}$ 

reflections  $\theta = 4 - 25^{\circ}$ 

 $\mu = 17.96 \text{ mm}^{-1}$ 

T = 298 K

Colourless

Block

#### Crystal data

 $NaZn_2(OH)(SeO_3)_2$  $M_r = 424.69$ Orthorhombic Pnma a = 13.332(1) Å b = 6.0756(5) Å c = 8.3258(6) Å  $V = 674.4(1) \text{ Å}^3$ Z = 4 $D_x = 4.18 \text{ Mg m}^{-3}$  $D_m$  not measured

## Data collection

| Siemens SMART area-                |
|------------------------------------|
| detector diffractometer            |
| $\omega$ scans                     |
| Absorption correction:             |
| multi-scan (SADABS;                |
| Bruker, 1997a)                     |
| $T_{\min} = 0.13, T_{\max} = 0.41$ |
| 4187 measured reflections          |
| 873 independent reflections        |

#### Refinement

| Refinement on F        | $(\Delta/\sigma)_{\rm max} = 0.0003$                       |
|------------------------|------------------------------------------------------------|
| R = 0.029              | $\Delta \rho_{\rm max} = 1.77 \ {\rm e} \ {\rm \AA}^{-3}$  |
| wR = 0.032             | $\Delta \rho_{\rm min} = -1.08 \ {\rm e} \ {\rm \AA}^{-3}$ |
| S = 1.09               | Extinction correction:                                     |
| 817 reflections        | Larson (1967)                                              |
| 71 parameters          | Extinction coefficient: 41 (3)                             |
| H atom refined         | Scattering factors from Inter-                             |
| Weighting: Chebychev   | national Tables for X-ray                                  |
| polynomial with 3      | Crystallography (Vol. IV)                                  |
| parameters (Carruthers |                                                            |
| & Watkin, 1979): 1.03, |                                                            |
| 0.668 and 0.810        |                                                            |

## Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

# $U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j.$

|     | x            | v           | ε           | $U_{eq}$ |
|-----|--------------|-------------|-------------|----------|
| Nal | 0.24941 (15) | 1/4         | 0.1276(2)   | 0.0189   |
| Znl | 0            | 0           | 0           | 0.0106   |
| Zn2 | 0.11247 (3)  | -1/4        | 0.28793 (5) | 0.0099   |
| Sel | 0.02697 (3)  | 1/4         | 0.38270 (4) | 0.0083   |
| Se2 | 0.32950(3)   | -1/4        | 0.27423 (4) | 0.0123   |
| 01  | 0.1094 (2)   | 1/4         | -0.0439 (3) | 0.0112   |
| O2  | 0.0878 (2)   | -1/4        | 0.5321 (4)  | 0.0169   |
| 03  | -0.0982 (2)  | 1/4         | -0.0367 (4) | 0.0106   |
| O4  | 0.24672 (17) | -0.0426 (4) | 0.3029(3)   | 0.0206   |
| O5  | 0.01832 (18) | 0.0322 (4)  | 0.2543 (3)  | 0.0136   |

### Table 2. Selected geometric parameters (Å, °)

|                           | U           | •            |             |
|---------------------------|-------------|--------------|-------------|
| Nal—Ol                    | 2.350(3)    | Zn204        | 2.192 (3)   |
| Na1                       | 2.312 (4)   | Zn2—O4"      | 2.192 (3)   |
| Na1—04                    | 2.300(3)    | Zn2—O5       | 2.143 (2)   |
| Na104"                    | 2.300(3)    | Zn2          | 2.143 (2)   |
| Zn101                     | 2.137 (2)   | Sel-O2'      | 1.686 (3)   |
| Zn1—01 <sup>111</sup>     | 2.137 (2)   | Sel-O5       | 1.705 (2)   |
| Zn1—03                    | 2.028 (2)   | Se1-05"      | 1.705 (2)   |
| Zn1—O3'''                 | 2.028 (2)   | Se2—O1       | 1.720(3)    |
| /n1—05                    | 2.140(2)    | Se2—O4       | 1.692 (2)   |
| Zn1—05'''                 | 2.140(2)    | Se2O4"       | 1.692 (2)   |
| Zn2—O2                    | 2.060(3)    | O3—H1        | 0.75 (8)    |
| ∠n2—O3 <sup>™</sup>       | 2.100 (3)   |              |             |
| Zn1—O1—Zn1"               | 90.58 (11)  | Zn1"-03-Zn2" | 102.04 (11) |
| Zn1-O1-Se2'               | 118.3(1)    | Zn2—O4—Se2   | 95.54 (11)  |
| Zr.1"—O1—Se2'             | 118.3(1)    | Zn1-05-Zn2   | 97.07 (9)   |
| Zn2—O2—Se1`               | 124.07 (18) | Zn1-O5-Se1   | 134.33 (13) |
| Zn1—O3—Zn1"               | 96.97 (13)  | Zn2—O5—Se1   | 119.96 (11) |
| Zn1—O3—Zn2 <sup>111</sup> | 102.04 (11) |              |             |
|                           |             |              |             |

Symmetry codes: (i)  $\frac{1}{2} - x$ ,  $\frac{1}{2} + y$ ,  $z - \frac{1}{2}$ ; (ii) x,  $\frac{1}{2} - y$ , z; (iii) -x, -y, -z; (iv)  $x, -\frac{1}{2} - y, z;$  (v) -x, -y, 1 - z; (vi)  $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} + z.$ 

The single H atom was located in a difference synthesis and refined isotropically without constraints. The highest difference peak is 0.90 Å from Se2 and the deepest difference hole is 0.85 Å from Se1.

Data collection: SMART (Bruker, 1997b). Cell refinement: SMART. Data reduction: SAINT (Bruker, 1997b). Program(s) used to refine structure: CRYSTALS (Watkin et al., 1997). Molecular graphics: ORTEP-3 (Farrugia, 1997). Software used to prepare material for publication: CRYSTALS.

We thank Xiqu Wang and Allan Jacobson (University of Houston) for providing diffractometer time. This work made use of the MRSEC/TCSUH Shared Experimental Facilities supported by the National Science Foundation under award No. DMR-9632667 and the Texas Center for Superconductivity at the University of Houston.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1315). Services for accessing these data are described at the back of the journal.

#### References

Inter-

- Brown, I. D. (1996). J. Appl. Cryst. 29, 479-480.
- Bruker (1997a). SADABS. Program for Absorption Correction. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1997b). SMART (Version 4.21) and SAINT (Version 4.05). Area Detector Control and Integration Software. Bruker AXS Inc., Madison, Wisconsin, USA.
- Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.
- Engelen, B., Baeumer, U., Hermann, B., Mueller, H. & Unterweide, K. (1996). Z. Anorg. Allg. Chem. 622, 1886-1892.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Larson, A. C. (1967). Acta Cryst. 23, 664-665.
- Morimoto, N., Tokonami, N., Watanabe, M. & Koto, K (1974). Am. Mineral. 59, 475-485.
- Watkin, D. J., Carruthers, J. R. & Betteridge, P. W. (1997). CRYSTALS User Guide. Chemical Crystallography Laboratory, University of Oxford, England.
- Wildner, M. (1995). J. Solid State Chem. 115, 360-367.